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A number of results aJ'e obtained for axisymmetric potential flows, characterizing the change in the gas-dynamic parameters 
which occurs in the subsonic region of a Laval nozzle with a cylindrical generatrix, and also in the case of flow around semi- 
infinite bodies with a qtllndrical generatrix. This paper follows a previous paper [1] in which the monotonicity properties of the 
solutions of the systen~; of equations describing axisymmetrical flows were established, and also [2] in which a number of similar 
problems for plane flows were considered. © 1997 Elsevier Science Ltd. All rights reserved. 

1. We will consider axisymmetrical potential flows of an ideal (inviscid and non-heat-conducting) gas. Using 
traditional dependent and independent variables, these flows are described by a non-homogeneous system of 
equations, which considerably complicates the analysis of axisymmetric subsonic flows. As a consequence, the results 
obtained for such flc~vs are much less rigorous than for similar plane flows. Existing results were mainly obtained 
by analysing the solutions of approximate equations [3-7]. Hence, we would expect that, by changing to a homo- 
geneous system obtained previously [1], additional possibilities would open up for investigating axisymmetric flows. 

Consider [1] the fimctions ¢~ = u and 13 = ypv. Here and henceforth x andy are cylindrical coordinates (x is the 
axis of symmetry), u and v are the components of the velocity vector, p is the density, q and 0 are the modulus and 
angle of inclination of the velocity vector, c is the velocity of sound and M = q/c is the Math number. 

Using the functions 0~ and [S the flows in question can be described by the following homogeneous system of 
equations [1] 

c 2 -I)  2 
+ _-o 

uv c 2 - v  2 ~t + 13--z-x = 0 
"~" ff'x c2 y yp 

The derivatives at and [st, calculated along the lines [S = const and ~ = const, respectively, have the form 

(1.1) 

¢tt =-[sn l - M 2 s i n 2 e ° ,  [St =CtnYP(1-M2sin2cp) (1.2) 
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where [sn and ~n are the derivatives calculated along the normal to the lines 13 = const and ~ = const, and 9 and 
co are the angles which the tangents to the lines ~ = const and 13 = const make with the velocity vector, respectively. 

For a unique determination of the level line of the function ~ passing through the point considered, we will 
further assume that the level line a = const is also the limit of the region of increased or reduced values of ct (with 
respect to the level ](ine). In this case, when passing through possible branching points we choose those extreme 
branches which are adjacent to the region in question. In addition, which is important later, when moving along 
such a defined level line the sign of the derivative ¢tn does not change. This also applies to the level line of the 
function 13. 

It can be seen from (1.2) that when M "~ I the functions ct and [S possess monotonicity properties, according to 
which each of them is monotonic along the level line of the other function. 

One of the impol~ant consequences of the monotonicity property is the lack of any closed level lines of the 
functions ~t and ~ provided that M ,~ i on these level lines. Further, it follows from the fact that these level lines 
cannot terminate inside a subsonic region, that each of the level lines of the functions ~ and [S, emerging from one 
point on the boundary of the subsonic region must necessarily reach this boundary at some other point. Finally, 
we point out the part played by the level line [S = 0, along which not only the function ct = u is monotonic, but 
also the pressurep and other functions which depend on q. 

The above properties of the level lines of the functions ¢ and 13 can be used to construct one of the possible 
versions of the level-line method for axisymmetric subsonic flows. In this case, the basis of the method is a combined 
analysis of the level liaaes of the functions ¢ and 13 which pass through certain characteristic points, and the conditions 
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on the boundary of the subsonic region considered. When investigating certain problems this method enables one 
to prove the incompatibility of the results of an analysis of the level lines and the assumed properties of the flow 
and, as a consequence, to indicate the actual properties of the flow in question. This method, and the similar 
"modified" hodograph method, has been actively used when investigating plane flows [1, 2, 8-14], and also to study 
the simplified equations which describe near-sonic axisymmetric flows [7]. The level-line method is used in the 
following sections for axisymmetric subsonic flows described by the complete equations of gas dynamics. 

2. Consider an axisymmetric Laval nozzle with a semi-infinite subsonic part (Fig. 1). Here in the sectionjh when 
x = -~ ,  v = 0; ha is the cylindrical generatrix, ab is the constructed section, in which v ~< 0, u ~> 0, and to the right 
of the point b we have v > 0, u > 0. Along the section ab, with the exception of the point b, discontinuities of the 
contour are possible in which the flow is slowed down. In Fig. 1 we show two such points a and d. We will assume 
that potential flow occurs in the subsonic region mfhan without branching points of the streamlines and without 
local supersonic zones. The latter, in particular, means that on the upper all, to the left of the sonic line n (ran is 
the sonic line) there are no convex corner points. 

The inequalities, characterizing the gas-dynamic parameters on the sonic line are of interest in themselves for 
the subsequent analysis of subsonic flow in the nozzle considered using the level-line method. In this connection 
the following theorem will be useful. 

Theorem 1. On the sonic line mn, joining the axis of symmetry and the nozzle wail, 13 ~< O, v ~< 0, and, as a 
consequence, the sonic point is situated on the constructed section ab. 

Proof. The sonic point m on the axis of symmetry is a point of local maximum of u for the subsonic region and 
the sonic line. Consequently, in a fairly small subsonic neighbourhood of this point the lines a = u = const connect 
the axis of symmetry and the sonic line. For motion along these lines from the axis of symmetry an < 0 and hence, 
by (1.2), on the sonic line in the region of the axis of symmetry v < 0. This fact is well known for the approximate 
equations [5-7]. 

For motion along the sonic line from the axis of symmetry, when the subsonic region remains on the left, a 
transition from negative values of v to positive values is possible on passing through the point at which either v = 
0, u = c or v = O, u = --c. The first of these points is also a point of maximum of u for the subsonic region and the 
sonic line. Consequently, in a fairly small subsonic neighbourhood of this point, level lines a = u = const exist on 
which at the initial points q = c and v < 0, at the final points q = c and v > O, and along which an < 0. But, by 
(1.2), this is excluded. For the approximate equations this fact follows from other results obtained previously [7]. 

Thus, for a rigorous proof of the theorem it remains to consider the exotic possibility of a transition from v < 
0 to v > 0 through the point at which v ffi 0, u = -c. To disprove this possibility, as indicated, we need to take into 
account the form of the subsonic part of the nozzle, since an analysis of the lines a = const in the neighbourhood 
of this point does not lead to any contradiction. Consider the level line ~ = v = O emerging from this point into 
the subsonic region. For motion along this level line I]n <~ 0 and, consequently, by (1.2) the function u increases 
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while q decreases. In the subsonic flow considered internal drag points are excluded, and hence on the level line 
up to where it reaches the boundary of the subsonic region v = 0, 0 ffi ~, -c  < u = -q <~ 0. But on the axis of 
symmetry, to the left at infinity and on the upper wall O ~ ~. On the sonic line for O = ~ we have u = -c. The 
contradiction obtained completes the proof of the theorem. 

These results are used to prove the following theorem. 

Theorem 2. At all points of the subsonic region of the nozzle considered (Fig. 1) v <~ 0, the velocity of the flow 
increases monotonically along the axis of symmetry fro and decreases monotonically along the cylindrical generatrix 
ha. 

Proof. From the condition of the problem and from the results of Theorem 1 we have v ~< 0 on the boundary 
of the subsonic region. The suggestion that, at a certain internal point of this region v > 0, can be refuted by analysing 
the level line 13 = ypv = const which passes through this point. This level line cannot be cut off inside the subsonic 
region, cannot be closed on itself and, finally, cannot reach the boundary of the region, since v ~ 0, 13 ~< 0 on it, 

We will now assmne that the velocity falls at a certain point on the axis of symmetry fro. Then along the level 
line c~ = u = const, ,emerging from this point, by (1.2), the function 13 increases, and, consequently, this level line 
cannot reach the boundary of the region on which {3 ~< 0, which also disproves the above assumption. We can similarly 
demonstrate that it is; impossible for the flow to accelerate at points of the cylindrical generatfix, which also completes 
the proof of the theorem. 

Consequences of the theorem, in particular, are: the inequafitiesp >~p. on ha and p ~<p. on fro and the existence 
in the subsonic region of at least one line ij of constant pressure (isobar) p ffi p . ,  emerging from the constricted 
region at infinity. These facts are useful, for example, when interpreting experimental data for a Laval nozzle with 
a long subsonic cylindrical section. 

3. We will consider the longitudinal flow around a semi-infinite body with a cylindrical generatrix ah (Fig. 2) 
and with a head section oa, along which the slope of the wall 0 <~ 3' ~< r~2. The flow is assumed to be potential, 
not containing closed streamlines and branch points of the streamlines, with the exception of the point o. At an 
infinite distance from the point o we have u ffi u. ,  0 < u ,  < c, v -- 0. In the flow region M <~ 1. In view of the 
above assumptions on the axis of symmetryfo and on the cylindrical generatrix ah we have v ffi 0, u >~ 0, on the 
head section we will have v ~> 0, u ~> 0, and on the body the slope of the wall 3' is identical with the angle 0. 

Theorem 3. For such flow we have the following: 
1. the velocity fall:; monotonically along the axis of symmetryfo and the cylindrical generatrix ah, and in the flow 

region there is at least one isobar i jp = p .  which departs from the head section to infinity; 
2. at all points of the flow region 0 <~ u ~< u., 0 <~ 13 ~< [3., 0 ~< v ~< [3./(py), where u. and 13. are the maximum 

values of u and 13 on the head section of the body (the maximum principle). 

~ It follows f~om the results obtained previously in [15] that in the flow considered the quantity I v I decreases 
as R "(1 e) R 2 = x2 + ),2, ~ > 0 as one departs from the point 0 to infinity. Consequently, when R = oo we have [3 
= O. Suppose now that a certain point on fo or ah the derivative ux > 0. Then along the level line of the function 
ct, emerging from this point, by (1.2) the function 13 decreases and, consequently, this level line cannot reach the 
boundary of the region considered, including infinity, since 13 >~ 0 on this boundary. The contradiction obtained 
proves the first assertion of the theorem. 

We will assume that at a certain internal point of the subsonic region one of the inequalities of the second assertion 
is not satisfied. Then a joint analysis of the corresponding level lines of the function a and/or 13, passing through 
this point, and the boundary conditions lead to a contradiction. The theorem is proved. 

These results can be transferred in a natural way to the case of a flow around semi-infinite stern sections containing 
a cylindrical generatrix ah (Fig. 2). In this case the flow is from right to left (u .  < 0), on the closing part oa we 
have v ~< 0, u ~ 0, and on the body, unlike the previous case, when the flow occurred from left to right at infinity, 
0 = 3' + ~. Under these conditions v <~ 0 in the flow region and along the cylindrical generatrix and along the axis 
of symmetry the ao~eleration of the flow is positive. For plane flows, results similar to Theorems 2 and 3 were 
obtained previously in [2]. 

G. G. Chernyi and S. I. Chernyshenko, when discussing [1], pointed out the importance of using the results 
obtained in [1] to investigate axisymmetrical flows, and P. I. Plotnikov mentioned the result obtained in [15], which 
is fundamental for proving Theorem 3. I express my thanks to them. 
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